COMPANY NAME	PRODUCT NAME
CYW, Inc./Chun Yu Works (U.S.A.) Inc, dba Western States Fastening Systems	Power Bull Wedge Anchors
Midwest Fastener Corp. Torquemaster	Blue Wedge Anchor

TABLE A—CROSS REFERENCE OF PRODUCT NAMES TO COMPANY NAMES

TABLE 1—DATA FOR POWER BULL WEDGE ANCHORS FOR USE IN UNCRACKED CONCRETE^{1,2}

			NOMINAL ANCHOR DIAMETER								
CHARACTERISTIC	STMBOL	UNITS	³ / ₈ inch	¹ / ₂ inch	⁵/ ₈ inch	³ / ₄ inch					
	Installat	ion Informa	ition								
Anchor diameter	$d_a \left(d_o \right)^3$	in.	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄					
Minimum diameter of hole clearance in fixture	d _h	in.	¹ / ₂	⁵ / ₈	³ / ₄	⁷ / ₈					
Nominal drill bit diameter	d _{bit}	in.	³ / ₈	¹ / ₂	⁵ / ₈	³ / ₄					
Minimum nominal embedment depth	h _{nom}	in.	2 ⁵ / ₁₆	2 ⁷ / ₈	3	3 ¹⁵ / ₁₆					
Minimum effective embedment depth	h _{ef}	in.	2	2 ¹ / ₂	$2^{1}/_{2}$ $3^{1}/_{2}$						
Minimum hole depth	h₀	in.	2 ¹ / ₂	3 ¹ / ₈	3 ¹ / ₂	4 ¹ / ₈					
Installation torque	T _{inst}	ft-lb	30	80	130						
Minimum edge distance	C _{min}	in.	3	3 ³ / ₄	5 ¹ / ₄ 5 ¹ / ₄						
Minimum spacing	Smin	in.	3	3 ³ / ₄	5 ¹ / ₄	5 ¹ / ₄					
Minimum concrete thickness ⁴	h _{min}	in.	4	5	6	7					
Critical edge distance	C _{ac}	in.	4	5	6	7					
			ANCHOR DATA								
Category number	1, 2 or 3	-	2	3	1	2					
Yield strength of anchor steel	f _{ya}	lb/in ²	44,500	44,500	75,000	44,500					
Ultimate strength of anchor steel	f _{uta}	lb/in ²	60,200	60,200	85,000	60,200					
Effective tensile stress area	A _{se,N}	in ²	0.0597	0.112	0.192	0.285					
Steel strength in tension	N _{sa}	lb	3,595	6,740	16,320	17,155					
Steel strength in shear	V _{sa}	lb	2,800	5,125	8,370	12,065					
Effectiveness factor for concrete breakout	<i>k</i> _{uncr}	_	24	24	24	24					
Pull-out resistance	N _{p,uncr}	lb	3,021	4,232	N/A ⁵	N/A ⁵					
Coefficient for pryout strength	k _{cp}	-	1.0	2.0	2.0	2.0					
Axial stiffness in service load range	β	lb/in	97,589	539,500	741,700	1,413,876					
Strength reduction factor, ϕ , for tension, steel failure m	0.75										
Strength reduction factor, ϕ , for shear, steel failure mo	0.65										
Strength reduction factor, ϕ , for tension, concrete failu	0.55 0.45 0.65 0.55										
Strength reduction factor, ϕ , for shear, concrete failure	0.70										

For **SI:** 1 in = 25.4 mm, 1 in² = 6.451×10^4 m, 1 ft-lb = 1.356 N.m, 1 lb/in² = 6.895 Pa.

¹The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D.

²Installation must comply with the manufacturer's published installation instructions

³The notation in parentheses is for the 2006 IBC.

⁴Concrete thickness must be the greater of $2h_{ef}$ or the tabulated value.

⁵See Section 4.1.4 of this report. N/A (not applicable) denotes that this value does not govern for design.

⁶Anchors are considered to be manufactured using ductile steel in accordance with ACI 318 D.1. Strength reduction factors are for use with the load combinations of ACI 318 Section 9.2 or IBC Section 1605.2.

⁷Condition B applies where supplementary reinforcement in conformance with ACI 318-11 D.4.3 is not provided, or where pull-out or pry-out strength governs. For cases where supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. Strength reduction factors are for use with the load combinations of ACI 318 Section 9.2 or IBC Section 1605.2.

Length ID threaded s	marking on stud head	А	в	с	D	Е	F	G	н	I	J	к	L	м	Ν	ο	Р	Q	R	s
Overall anchor length, (inches)	From	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / ₂	4	4 ¹ / ₂	5	5 ¹ / ₂	6	6 ¹ / ₂	7	7 ¹ / ₂	8	8 ¹ / ₂	9	9 ¹ / ₂	10	11
	Up to but not including	2	2 ¹ / ₂	3	3 ¹ / ₂	4	4 ¹ / ₂	5	5 ¹ / ₂	6	6 ¹ / ₂	7	7 ¹ / ₂	8	8 ¹ / ₂	9	9 ¹ / ₂	10	11	12

TABLE 2—POWER BULL WEDGE ANCHOR LENGTH CODE IDENTIFICATION SYSTEM

For **SI**: 1 inch = 25.4 mm.

FIGURE 1—POWER BULL WEDGE ANCHOR

FIGURE 2—POWER BULL WEDGE ANCHOR INSTALLATION